ADVANCED ACCELERATOR APPLICATIONS

Technical Quarterly Review (January-June 2002)

WBS 1.03 - Systems Technologies - ANL TREAT Experiments - Engineering Feasibility Sodium-Cooled ADS Reference Design

Presented by: Jordi Roglans Washington, D.C., July 10, 2002

ANL Activities - FY '02

- ADTF Documentation J. Herceg
- TREACS Feasibility Study G. Palmiotti
 - Coordination with
 - ANL-W
 - Idaho Accelerator Center (ISU)
- ADS Reference Design J. Herceg
 - Coordination with
 - LANL (Sodium-cooled/LBE-cooled ADS)
 - BNL (physics)
 - B&R (facility layout)

ACCOMPLISHMENTS (Jan - Jun '02)

- Issued ADTF System Design Description and associated documentation
- TREACS Feasibility Study underway
 - Experiment layout
 - Target design
 - Issued report to DOE on TREACS (technical and cost estimates)
- ADS Reference Design
 - Developed scaled-up LBE target; issued document
 - Developed preliminary facility requirements; issued documentation
 - Continued scaled-up engineering design of sodium-cooled ADS facility

TREACS

(TREAT Experiment for Accelerator-Driven System)

- Purpose: Experimental validation of dynamic behavior of coupled accelerator-multiplier system
 - Support development of control mechanisms and control strategies for an ADS system
 - Support TRADE program (licensing basis support,...)

TREACS - Feasibility Study

- Assessment of the engineering feasibility of the experiment
 - Facility layout test assembly
 - Target design
 - Target cooling
 - Safety
 - Physics

TREACS

- Study the start-up and shutdown procedures for an ADS;
 validation of the instrumentation needed for monitoring such a procedure.
- Study the domain of reliable operation of an ADS system at different levels of subcriticality (from source-dominated to critical).
- Simulate different phases of fuel irradiation (burn-up swings) by control rod movements.
- Validate different techniques for subcriticality measurement in a system at substantial power.
- Study the correlation between reactor power and beam current.

TREACS - Engineering Feasibility

- Use of Idaho Accelerator Center (IAC) electron accelerator - 30 Mev LINAC
- A source strength of about 10¹⁴ n/sec
- U target (EBR-II blanket material)
- Target assembly inserted from the top
- Electron beam inserted horizontally

TREACS - Layout

TREAT REACTOR

TREACS - Layout

TREAT REACTOR BUILDING SOUTH HIGH BAY

TREACS Target

Target assembly - cooling

Sodium-Cooled ADS Reference Design

- Basic approach
 - Scale-up of ADTF (100 MW_{th}) to full size (~800 MW_{th})
 - Engineering solutions to resolve scaling problems
 - LBE target: scale-up of ADTF counterpart
 - Use of existing core point design
- Assume use of energy (e.g., maintain capability for electricity production)
- Develop functional and design requirements for feedback to update ADTF requirements

Engineering Design of Reference ADS

- Primary systems design
 - Use existing sodium system core point design (~840 MW_{th}) from LA-UR-01-1817
 - BNL developing core models with more realistic target geometry and dimensions
 - Scaled-up primary tank and main components
 - Arranged equipment on top of primary tank cover to allow for refueling and re-targeting operations
 - No modified design available for ADS High-Energy Beam Transport (HEBT) or In-Pile Beam Tube (IPBT) - ADTF designs scaled up geometrically
 - Control system

CORE - Point Design

- Thermal power: 840 MW_{th}
- Initial k_{eff}: 0.97 0.98
- Coolant inlet temperature: 343°C
- Temperature rise: 167°C
- Active fuel: 96.5-cm-long
- Optional Absorber assemblies

ADS Reference Design - Elevation View

Plan View of Primary Tank

Plan View of Primary Tank Cover

Plan View of Operating Floor

HEBT Support Structure

ADS LBE Target

Feature	ADS TargetSCM Power	er (MW th)10084	DSCM fuel zone d

ADS LBE Target

ADS Target

- Difficulties in direct scaling up of the LBE target
 - Size of inlet/outlet piping
 - Mass of LBE in target assembly (including LBE in circulation)
- Possible alternative LBE target designs that do not require external cooling
 - Helical pipes cooled with multiplier sodium
 - Target with multiple layers of spheres cooled with multiplier sodium.
 - Currently assessing effect of basic design parameters (diameter of spheres, number of layers)

ADS Requirements

- Functional and design requirements cannot be adapted simply from requirements developed for ADTF
 - ADTF was a test facility
 - Effects of size on beam and control requirements
 - ADTF assumed initial operation with EBR-II fuel
- Requirements need to be developed:
 - Based on facility mission
 - Optimization process for main design parameters
 - Include constraints: safety, desired fuel composition

ADS Requirements (cont'd)

- A preliminary set of functional and design requirements has been issued
 - Main parameters for optimization are identified
 - Fuel type
 - Operational cycle
 - Initial k_{eff} and burnup swing
 - Control approach: trade-off between control by beam current adjustment and reactivity compensation devices (i.e., absorber assemblies with no scram function)
 - Integrate process in
 - Facility engineering design
 - Safety case for ADS

Plans for Remainder of FY '02

- Complete report on engineering feasibility of TREACS
- Complete report on preliminary sodiumcooled ADS reference design (ADTF-based)
- Explore alternative target designs
- Further develop the approach optimization of the design requirements
- Feedback requirements for an update of ADTF functional requirements